Monday, December 18, 2006

FORMULACIONES DE SUSTRATOS

En la selección de componentes y sus proporciones, para la formulación de sustratos, se deben tomar en cuenta las características que definen las cuatro funciones básicas de un medio para cultivo en recipientes: anclaje, retención de humedad, porosidad e intercambio de nutrientes para la planta.
Por lo anterior, solo interesa saber las características que posee el medio y no cuáles son los materiales que lo componen, como erróneamente se acostumbra.
6.1 Sustratos con tierra
El sustrato con base de tierra se utiliza más para la producción de flores de corta y follajes en bancos. En otros países un porcentaje muy pequeño de productores, de plantas en potes, usan sustrato con tierra.
La tierra provee una CIC, nutrientes y retención de agua razonables. Cuando un tercio del suelo es sustituido por arena, esas propiedades se reducen. Para restaurarlas, tradicionalmente se ha agregado al sustrato una enmienda con CIC y retención de agua altos, en vez de un tercio adicional de tierra.
La excelente estructura foliar del musgo Sphagnum da gran cantidad de poros estrechos para retener agua. La turba tiene una de las mayores capacidades de retención de agua que cualquier otra enmienda, cerca del 60 % del volumen. Así, la turba Sphagnum provee buena capacidad de retención de humedad y una buena aireación si es gruesa.
El sustrato por lo general requiere de tres enmiendas durante la formulación. 1a., el pH debe ser ajustado en el rango de 6,2 a 6,8 con cal o dolomita agrícola. Cuando es usado un suelo neutro o alcalino no se requieren ajustes. Los suelos ácidos pueden requerir unos 6 kg de cal por m3. 2a., ofrecer fósforo agregando 1,8 kg de superfosfato, 0-20-0, o 0,9 kg de superfosfato, 0-45-0 por m3. 3a., una mezcla completa de nutrientes de las que existen muchas fórmulas en el mercado.
A veces la cantidad de materia orgánica es adecuada pero el contenido de arcilla muy alto. El drenaje pobre y las rajaduras, cuando se seca, son síntomas de esta condición. Esto es prevaleciente cuando se utiliza suelo arcilloso. El problema es resuelto con la adición de arena al sustrato. No se usa la perlita puesto que el peso no es problema en los bancos.
A veces se usa arcilla calcinada que, además de proveer macroporos para el drenaje y la aireación, contiene numerosos microporos dentro de cada partícula para aumentar la retención de agua y tiene una CIC alta que mejora la retención de nutrientes. Una cantidad equivalente al 10 a 15 % del volumen del banco es incorporada al sustrato. Es caro pero solo necesita ser aplicado una vez puesto que resiste el rompimiento.
El cuadro 8 muestra cuatro formulaciones con base de tierra. No parece que en la selección de materiales se hayan tomado en cuenta las características exigidas por las cuatro funciones básicas. No es clara la necesidad de arena, que aumenta el peso, ni el papel de la gallinaza y el estiércol de vacuno.
Cuadro 8. Algunas mezclas recomendadas por el Ministerio de Agricultura y Ganadería (Guía Agropecuaria)
Fórmula




No. 1
Arena 10 %
Cascarilla de arroz 25%
Tierra buena 50%
Burucha descompuesta 15%
No. 2
Arena 10%
Cascarilla de arroz 15%
Tierra buena 50%
Compost 25%
No. 3
Arena 10%
Burucha descompuesta 15%
Tierra buena 50%
Estiércol de vacuno 25%
No. 4
Arena 10%
Cascarilla de arroz 15%
Tierra buena 50%
Gallinaza 25%
En general los suelos de los países tropicales son arcillosos y poseen una capacidad muy alta de fijación de fósforo, lo que los hace deficientes para su utilización como sustrato para la producción de plantas. Esto es un problema serio en la producción de árboles frutales y forestales en bolsas, los que son llevados al campo sin haber desarrollado un sistema radical adecuado, lo cual redunda en bajos rendimientos iniciales.

6.1.1 Adaptación del suelo a recipientes
La solución lógica, para los problemas de recipientes poco profundos, es un cambio a texturas gruesas para aumentar el diámetro de los poros. Esto resuelve los problemas de aireación, pero crea un nuevo problema por la reducción de la capacidad de retención de agua del medio. Cuando el diámetro de las partículas que forman un medio son aumentadas, se reduce el área de superficie total de estas partículas en un volumen dado. Puesto que el agua es retenida sobre la superficie de estas partículas, la cantidad total de agua en el medio decrece conforme el diámetro de las partículas aumenta (la textura se vuelve más gruesa).
El suelo debe ser preparado para su uso en recipientes, dándole una textura más gruesa y aumentando su estructura, antes de la siembra. Una textura más gruesa puede ser alcanzada por la mezcla de arena con el suelo. La estructura puede ser mejorada por la incorporación al suelo de partículas de agregados grandes como la turba y compost.
Figura 19. Esquejes enraizados en sustrato a base de compost.
Figura 20. Medio de germinación utilizando granza de arroz pura.
Figura 21. Cobertura a base de materia orgánica compostada (sin tierra) para mejorar el crecimiento de helechos.
6.2 Sustratos sin suelo
La falta de un suelo adecuado, en forma permanente y de bajo costo así como y los problemas físicos, químicos y biológicos citados antes han hecho conveniente el uso de medios sin suelo.
Las necesidades de un cultivo sin suelo son evidentes por las infecciones que estos sufren con nemátodos y algunas enfermedades que van unidas a la pobre estructura de aquellos suelos, lo que hace marginal el beneficio de los cultivos en invernadero.
Otros productores están interesados en el embarque, a largas distancias, de plantas en potes y deben tener plantas acabadas tan livianas como sea posible. Un sustrato sin suelo puede ser formulado en densidades más livianas que en sustratos con tierra.
Y otros buscan sustratos sin suelo como una forma de automatización, pues se pueden comprar listos para su uso, eliminando así la necesidad de agregar otra labor o instalaciones de mezclado.

6.2.1 Componentes de un sustrato sin tierra
Hay tantos materiales disponibles que los productores cometen el error de mezclar muchos tipos equivocados juntos. Las cuatro funciones del sustrato (soporte de las plantas, aireación, retención de nutrientes y retención de humedad) deben ser consideradas en el desarrollo de la fórmula. Se necesita materia orgánica o arcilla para proveer CIC para la retención de nutrientes. A menos que la materia orgánica y la arcilla estén en agregados gruesos para facilitar la aireación, se necesitan partículas de textura gruesa como la arena, la perlita, o el poliestireno. Si la materia orgánica o la arcilla seleccionados tienen una alta capacidad de retención de humedad, como lo hace la turba, no son necesarios más componentes. Sin embargo, si la materia orgánica usada es de capacidad insuficiente de retención de humedad, como aserrín, podría ser necesario incluir un segundo material orgánico o arcilloso (como la turba o arcilla calcinada) para aumentar la capacidad de retención de agua. La densidad deseada del medio puede ser obtenida evitando las partículas muy gruesas o demasiado arcillosas.
Un buen sustrato no debe contener más que uno a tres componentes. La selección de componentes dependerá, de su disponibilidad y costo. Un cultivador que puede comprar turba al por mayor o aquel situado cerca del punto donde es obtenida de modo que los costos de transporte son mínimos, debería utilizar turba por su superior capacidad de retención de agua y CIC. Si el peso del sustrato no es un problema, el productor debe mezclar con componentes más baratos de texturas gruesas, como lo es la arena. Si se requiere un peso ligero, pueden ser usados componentes considerablemente más costosos, perlita y vermiculita. Si se requiere un peso ligero y el productor es afortunado por estar localizado cerca de una fuente de hojuelas o cuentas de poliestireno, la densidad más ligera puede ser obtenida con un costo menor que la perlita. Un productor localizado en un área de aserradero es probablemente encontrará aserrín y burucha de modo económico. La arena es añadida al aserrín porque ella se acomoda entre las partículas de madera, añadiendo así una mayor área de superficie, y como consecuencia, más retención de agua en un volumen dado de sustrato. Recuerdese que la arena es añadida al suelo con el propósito contrario, aquel de separar las partículas para abrir poros largos para aireación. Siempre, la turba de musgo es añadida también al aserrín para aumentar bastante la retención de humedad y la retención de nutrientes.
En la elección de una mezcla determinada. para la confección de un sustrato. es necesario pensar en la fase del cultivo en que se hallan las plantas para las que se va a preparar el medio. Si se trata de semilleros se requerirá una textura fina, estructura estable y alta capacidad de retención de agua para lograr el mantenimiento de una humedad constante. Pero si el sustrato se prepara para macetas, se requerirá una estructura media a gruesa, con buenas porosidad total y libre, que dé una aireación adecuada y un drenaje conveniente, mayor cantidad de nutrientes, una CIC elevada y capacidad tampón.
El sustrato para enraizamiento de esquejes debe tener condiciones similares a las del medio para germinación de semillas, prestando atención sobre todo a la porosidad libre para favorecer el intercambio gaseoso, factor de gran importancia en el proceso de rizogénesis. El medio de enraizamiento desempeña tres funciones:
· Sostener la estaca en su lugar durante el periodo de enraizamiento.
· Proporcionar humedad constante a la estaca.
· Permitir la llegada de aire a la base de la estaca.
6.2.2 Formulaciones a base de turba
Las mezclas U.C. (Universidad de California) fueron de las primeras mezclas sin suelo utilizadas en Estados Unidos de América en los 50s. Son una serie de cinco sustratos que van desde 100 % turba Sphagnum hasta 100 % de arena fina y combinaciones intermedias de los dos. Estos sustratos son formulados por productores individuales. El sustrato de invernadero para potes más popular de esta serie es la mezcla mitad turba mitad arena fina. La designación arena fina indica arena entre 0,5 y 0,05 mm de diámetro, la cual es equivalente a una arena que pasa una zaranda de 30 mallas pero es retenida por una zaranda de 270 mallas. Las mezclas de turba fueron introducidas en la Universidad de Cornell a inicios de los 60s. La mezcla A está compuesta de mitad turba de musgo Sphagnum y la otra mitad por vermiculita de grado hortícola. La mezcla B contiene perlita hortícola en vez de vermiculita. Mientras algunos productores formulan mezclas Peat-Lite, hay en el mercado una cantidad de preparaciones comerciales de sustratos sin suelo similar a Peat-Lite Mix A.
Llama la atención que el sustrato más discutido está compuesto de solo dos componentes.
Esto es posible porque uno es turba, que tiene sola la mayor capacidad de retención de agua que cualquiera de los componentes citados, una CIC significativa, y un grado modesto de aireación si no es molido fino. En los casos donde son agregados arena, perlita, se da un aumento de la aireación.
Las adiciones de arcilla y vermiculita aumenta la CIC además de aireación. La turba es muy cercana a un medio ideal por ella misma si contiene agregados gruesos. Los productores europeos han aprendido a cultivar cosechas de alta calidad en turba sola. Si este sistema es utilizado, es importante cuidarse del exceso de humedad por riegos demasiado frecuentes.
Puesto que la turba retiene nutrientes, es importante que no sean aplicadas sobredosis de fertilizante y que el sustrato sea completamente humedecido cada vez que el riego es necesario para asegurar que el exceso de sales de los nutrientes remanentes son lixiviados del medio.
Las mezclas Peat-lite se desarrollaron en la Universidad de Cornell, New York; con partes iguales de vermiculita y turba, habiéndose utilizado principalmente para la germinación de semillas, transplantes y cultivo en contenedores de plantas sembradas en primavera y anuales; algunos agricultores las han utilizado para el cultivo de tomates en bancadas en vez de aserrín.
Las mezclas Peat-Lite son considerablemente más ligeras que las UC, puesto que la perlita y vermiculita son una décima parte menos pesadas que la arena fina. Las mezclas Peat-Lite están hechas con partes iguales de turba de Sphagnum y perlita hortícola o vermiculita n° 2.
En el cuadro 9 se presentan una lista de sustratos para enraizar. Estos son las mezclas más comunes producidas por los mismos productores y son representativas de muchas de las mezclas preparadas. La primera mezcla es la clásica basada en tierra que contiene volúmenes iguales de suelo franco, turba y arena de grado de concreto. Si uno considera vermiculita como sustituto del suelo, resulta una mezcla sin tierra en el cuadro. Esto es razonable puesto que la vermiculita tiene propiedades de alta retención de agua y nutrientes. Note que la turba, de la mezcla clásica, puede ser retenida o puede ser parcial o completamente sustituida por corteza. Las fórmulas y los componentes utilizados con corteza de pino y corteza de madera dura son las mismas. Cuando la turba se combina con corteza, no es necesario usar vermiculita. Otras materias orgánicas, incluyendo diferentes materiales orgánicos compostados, se deben ver como un sustituto parcial o total de la turba. Perlita, poliestireno, o cualquier otra partícula gruesa capaz de impartir propiedades de drenaje y aireación al sustrato pueden ser sustituidos por arena de la mezcla clásica con base de suelo. Las empresas que producen grandes cantidades de sustratos casi siempre evitan el uso de arena porque desgastan rápidamente el equipo de mezcla y aumentan los costos de embarque.
Cuadro 9. Diversas fórmulas de sustratos y sus usos comunes, en países templados (Hartman; 1991).
Componentes de la mezcla



Uso
1 tierra
1 turba
1 arena

para potes y bancos
1 vermiculita
1 turba


para germinador
2 vermiculita
2 turba
1 perlita

para plantas
1 vermiculita
1 corteza de pino


para plantas
2 vermiculita
2 corteza de pino

1 perlita
para plantas
2 vermiculita
1 turba
1 corteza de pino
1 perlita
para plantas

1 turba
3 corteza de pino
1 arena
para plantas

1 turba
3 corteza dura
1 arena
para plantas
1 lana de roca
1 turba


para plantas
3 lana de roca
7 turba


para plantas
6.2.3. Economía
El productor que elige el uso de un sustrato sin suelo debe decidir si comprarlo listo para usar o para mezclar. Esta decisión debe ser hecha individual y basada en los costos. El productor debe calcular el costo del sustrato que va a formular y compararlo con el precio comercial del sustrato incluido el transporte. En el cálculo de los costos de formulación, está seguro de incluir el tiempo de manipuleo, costos administrativos, costos de depreciación de las mezcladoras, alguna faja de transporte y cargador para llenar las mezcladoras, edificios para acopiar los componentes del sustrato, costos de pasteurización si fuera necesaria, y todos los costos de las labores. Si formula un sustrato con base de tierra o sin tierra, usted puede ser sorprendido por los costos verdaderos.
Un sustrato comercial, mientras es caro en el valor facial, no es muy diferente en los costos del sustarto individual formulado y puede ser en un momento más barato si una fuente estable de componentes de costo bajo no están disponibles para hacer las propias mezclas.
6.2.4 Mezclas para países tropicales
Muchos proyectos de vivero mostraron que, después de la siembra, el crecimiento fue mucho más pobre de lo esperado. Los viveristas tienden a relacionar la calidad de sus cultivos con la apariencia del sistema foliar el cual es criado en condiciones de vivero y siempre manipulado con la adición de nutrientes. El desarrollo radical es igualmente importante pero, desafortunadamente, con frecuencia soslayado. Parte del problema descansa en el tipo de recipiente utilizado y en la cantidad y calidad de las raíces desarrolladas dentro del recipiente durante esa etapa.
Las raíces de las plantas deben efectivamente atar el medio dentro del pote. Para que esto suceda la formación de raíces dentro del recipiente debe ser amplia y rápida.
El ingrediente básico más común utilizado como sustrato para potes, en los países tropicales, es suelo, en mezcla con arena y materia orgánica (casi siempre estiércol) en diferentes proporciones. Pero, en los países templados, el principal componente de las mezclas para recipientes es materia orgánica, por lo común turba.
En los países tropicales la proporción de materia orgánica en la mezcla es muy pequeña, y se ha demostrado que las mezclas para potes con una fracción mineral muy alta, mientras que ofrece un excelente soporte y buen crecimiento de la parte aérea, en vivero, no permite el desarrollo de un sistema radical fibroso de alta calidad. Además, en muchos casos el suelo utilizado en la mezcla tiene fracciones muy altas de arcilla y limo. Estos componentes inevitablemente se acumulan en el fondo de los recipientes, eliminando los espacios de aire mientras producen un ambiente totalmente inadecuado para el desarrollo radical.
En general, se establecen los siguientes puntos al respecto:
· En los países templados la mezclas orgánicas para potes son fáciles de obtener, no así en los países tropicales y subtropicales.
· Las mezclas orgánica son más livianas y más económicas de transportar que las mezclas con base de tierra.
· Las raíces de las plantas tienden a amarrar completamente las mezclas orgánicas, aún después de un periodo corto de crecimiento, mientras esto raramente sucede en mezclas a base de tierra.
· El riego es más fácil de manejar para mezclas orgánicas que para mezclas de tierra.
· Las mezclas orgánicas retienen mejor la humedad en tránsito lo que da a las plantas más oportunidad de sobrevivir después del transplante.
Con estos beneficios es sorprendente que se siga utilizando suelo como base para la producción de vivero. La cantidad de materia orgánica agregada generalmente es pequeña, haciendo poca diferencia en peso, capacidad de retención de humedad, o en la necesidad de amarre por las raíces. La razón de esto es que los ingredientes orgánicos son difíciles de encontrar en la cantidades adecuadas y a precios satisfactorios en estos países. Es probable que la razón fundamental sea que los beneficios financieros no han sido evaluados debido a que las ganancias, en la mejora de la plantación, se acreditan a las características genéticas, más que a la mejora física.
Las responsabilidades del viverista siempre terminan cuando las plantas dejan el vivero y entonces se siente poco responsable de la plantación. También siempre la meta de la gestión es la cantidad más que la calidad, puesto que los números son tangibles mientras la calidad es subjetiva.
La tarea más importante de los administradores de los viveros debería ser obtener la mejor calidad posible de desarrollo de raíces para sus plantas. Esto requerirá un enfoque diferente para obtener ingredientes para formular mezclas para recipientes. El uso de materiales orgánicos de fácil obtención en países tropicales han demostrado su valor, no en términos financieros, sino en términos biológicos.
La investigación más amplia en la producción de buenos viveros en recipientes se ha realizado en los países templados. La investigación en viveros ha demostrado que el desarrollo de un sistema de raíces fibrosas es esencial para una buena calidad de los plantones. La eficiencia absorbente de la raíz está directamente relacionada a su área de superficie y la raíces fibrosas ofrecen la mayor área de superficie. El desarrollo de raíces fibrosas está relacionada a la porosidad de la mezcla para potes la cual a cambio está relacionada con la fracción orgánica de la mezcla. La fracción orgánica de la mezcla ayuda a resistir la compactación y retiene agua, mientras mantiene la porosidad para el movimiento del aire y el crecimiento de las raíces.
Figura 22. No importa las dimensiones del vivero, el uso de un sustrato adecuado es el factor de producción más importante y que mejor resuelve los problemas de manejo.
Los ingredientes orgánicos, como la turba y humus, son obtenidos con facilidad en muchos países templados. Los viveros grandes en EUA y Europa pueden comprar mezclas comerciales para potes listas para usar, evitándose la necesidad de hacer sus propias mezclas.
Los materiales usados más comunes son turba de musgo, vermiculita, perlita, arena, y aserrín. En los países tropicales la importación de mezclas para potes o sus componentes es muy costosa.

0 Comments:

Post a Comment

<< Home